NavAdr Technologies Solutions RevAdr

A-04, Street of Europe, Hinjewadi-Phase1 Pune-411057, Ph: +91-8857019010

Email: training@navadr.com

This curriculum is designed to help participants reach an intermediate level of expertise in data science, equivalent to 2-3 years of experience. It includes foundational topics, core data science concepts, advanced techniques, and hands-on practice, delivered in a structured 36-week format.

Week	Торіс	Key Concepts and Activities
1	Introduction to Data Science	Overview of Data Science lifecycle, Python basics (NumPy, Pandas), and role understanding.
2	Data Manipulation and Visualization	Data wrangling with Pandas, EDA using Matplotlib and Seaborn, handling missing data, and outliers.
3	Statistics for Data Science	Descriptive statistics, probability distributions, hypothesis testing (t-tests, chi-square).
4	Linear Algebra and Calculus	Matrix operations, gradient descent, eigenvalues, eigenvectors, and dimensionality reduction basics.
5	Supervised Learning: Regression	Linear regression, polynomial regression, feature engineering, and evaluation metrics (RMSE, R ²).
6	Supervised Learning: Classification	Logistic regression, k-Nearest Neighbours, decision trees, and metrics (Precision, Recall, F1-Score).
7	Unsupervised Learning	Clustering (k-Means, hierarchical), PCA, t-SNE, and applications like anomaly detection.
8	Model Evaluation and Validation	Train-test split, cross-validation, hyperparameter tuning, avoiding overfitting and underfitting.
9	Ensemble Learning	Random Forest, Gradient Boosting (XGBoost, LightGBM), and stacking/blending techniques.
10	Feature Engineering	Handling categorical data (One-hot encoding, target encoding), feature selection (RFE), interaction terms.
11	Time Series Analysis	Time series components (trend, seasonality), ARIMA, SARIMA, and forecasting techniques.
12	Natural Language Processing Basics	Text preprocessing (tokenization, stemming), vectorization (Bag of Words, TF-IDF), and text classification.
13	Introduction to Deep Learning	Neural networks (perceptron, backpropagation), feedforward networks, and basic TensorFlow/PyTorch usage.
14	Convolutional Neural Networks (CNNs)	Understanding convolutions, pooling layers, and building CNNs for image classification.
15	Recurrent Neural Networks (RNNs)	RNNs, LSTMs for sequential data, applications in time series and text, TensorFlow/PyTorch implementation.
16	Advanced NLP	Word embeddings (Word2Vec, GloVe), transformers (BERT introduction), and sequence-to-sequence models.

NavAdr Technologies Solutions NavAdr

A-04, Street of Europe, Hinjewadi-Phase1 Pune-411057 ,Ph: +91-8857019010

Email: training@navadr.com

Week	Topic	Key Concepts and Activities
17	Big Data for Data Science	Introduction to Hadoop, Spark, and PySpark for large-scale data processing.
18	MLOps Concepts: Fundamentals	Overview of MLOps, CI/CD for machine learning, pipeline orchestration, and introduction to MLFlow.
19	MLOps Concepts: Deployment	Model serving using Flask/FastAPI, Dockerizing ML models, introduction to Kubernetes for scaling.
20	MLOps Concepts: Monitoring and Retraining	Monitoring models for drift, automated retraining workflows, and model versioning in MLFlow.
21	Capstone Preparation	Dataset selection, problem formulation, designing an end-to-end pipeline, data cleaning, and feature engineering.
22	Capstone Project Development	Building models, evaluating performance, optimizing hyperparameters, and documenting results.
23	Capstone Deployment	Deploying the model (Flask/Streamlit), creating dashboards for real-time insights, presenting results.
24	Certification and Career Preparation	Preparing for certifications (e.g., TensorFlow, AWS ML)
25-36	LIVE Project Exposure	3 Months – Live Project Experience